

WBS 6.5.2.4, 6.5.4.4 **Low Voltage Power Supply Production and Box Assembly Technical** Overview

Haleh Hadavand Dhiman Chakraborty

UT Arlington Northern Illinois University

Conceptual Design Review of the High luminosity LHC Detector Upgrades National Science Foundation Arlington, Virginia March 8-10, 2016

LVPS Production

LVPS Production Expert

- Haleh Hadavand, Assistant Professor of Physics, has been part of the ATLAS experiment since 2005
- Integral part of Cosmics commissioning online and offline monitoring for the LAr Calorimeter in close collaboration with the Tile Calorimeter community
- Developed ATLAS' Data Quality Monitoring software and installed and integrated system for Calorimeter use
- Charged Higgs Convener for the ATLAS collaboration
- Recent addition to Tile Calorimeter

UT Arlington

- Physics Personnel:
 - Faculty: Haleh Hadavand (LVPS), Andrew Brandt (LVPS)
 - Graduate H. Akafzade and undergrad students
- Engineering Personnel:
 - Faculty: Ali Davoudi, EE
 - Electrical Associate: Seyedali Moayedi
 - Electrical Technician: Michael Hibbard

LVPS Requirements

Figure 5. Picture of a brick test fixture

Figure 8. Close-up view showing connectivity of a brick in the Burn-in Station

Fig. 1. TileCal Module

Fig. 2. Electronics drawer

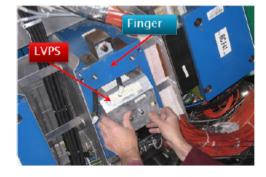
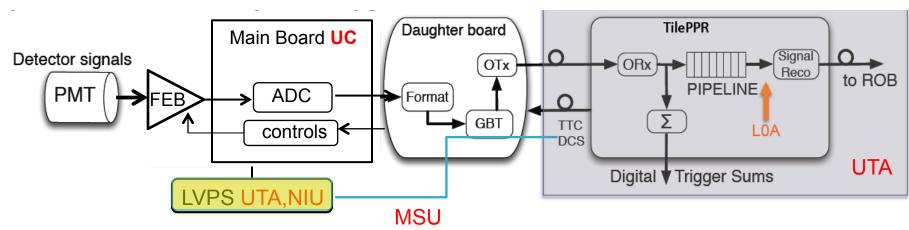
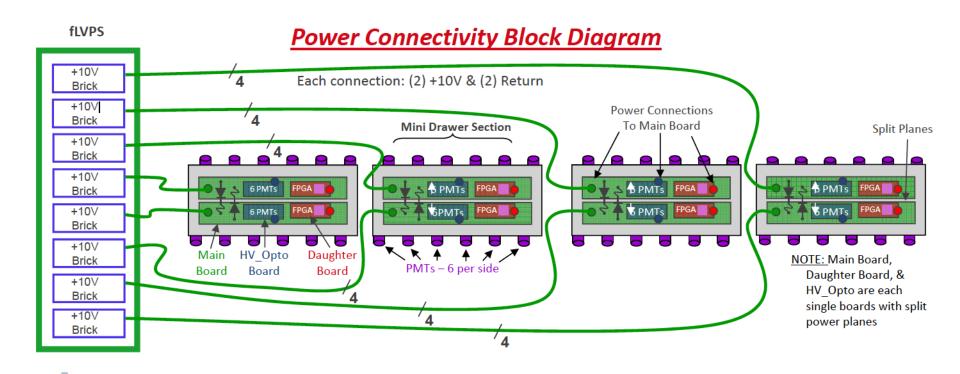



Fig. 3. LVPS mounted on module

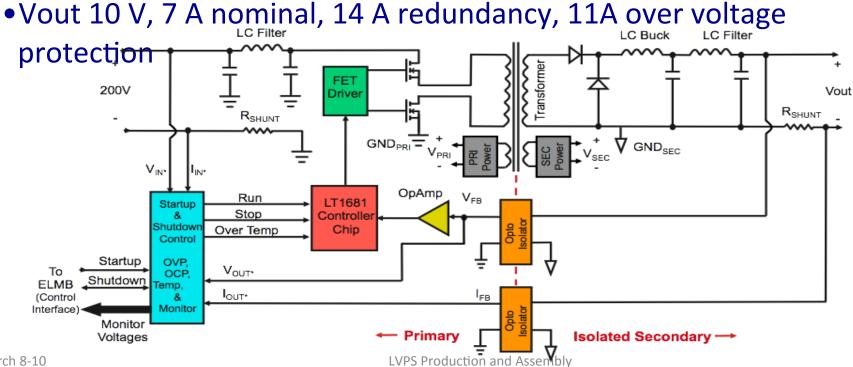
Requirements: Vout 10 V, 7 A nominal, 14 A redundancy, 11A over voltage protection

Front End Electronics



- 3-in-1 Front-end boards: Shaping of PMT signals for digitization, calibration and luminosity monitoring
- Main board: Digitize shaped PMT pulses, control attached 3-in-1 Front-end boards, power management from LVPS
- Daughter board: High speed link to the off-detector electronics for commands,
 On-detector monitoring / control and LHC clock extraction and distribution
- PPR: Off detector data stored in pipeline for trigger decision, interface to DAQ, and DCS

Power Connectivity


- Each power brick provides power to half a mini drawer
- However each brick capable of powering entire mini drawer through diode or in main board

LVPS Schematic

- Buck Convertor with transformer
- Controller chip operates at 300 kHZ
- 10-30% Duty cycle
- transformer winding of 14:2

LVPS Plans

- Major R&D phase completed by Argonne National Labs (ANL) under Gary Drake and Jimmy Proudfoot
- Transition of knowledge from ANL to UTA in progress
- Setting up test stand now and to get several bricks from Argonne
- Pre-pre-production of 8 bricks to happen in a few months
 - Use test stand for checkout and burn in
- Pre-production of 10%+1%(failure rate) of bricks (111) to happen in 2018
- Production of half of total bricks, 1024, to start in latter half of 2020 and lasts for ~2 years
- Send bricks to Northern Illinois University to be assembled into boxes

BOE for LVPS Production

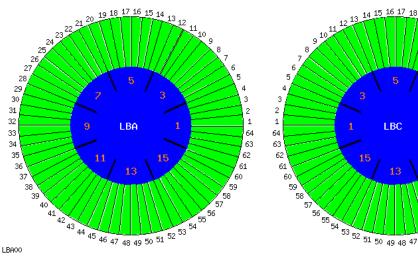
- Labor: Based on labor from version of bricks in detector but with adjustments for UTA to ramp up expertise and to compensate for personnel overturn
 - Parts procurement
 - Basic checkout and burn in
 - Repairs to 10-20% of bricks
 - Management of project
- Material: Very good estimate from cost of brick production for the Demonstrator
 - Stock parts
 - Transformer
 - Thermal post
 - PCB Fab and Assembly
 - Test Stands
- Travel: Going onsite to vendors for procurement and instructions for fabrication and assembly

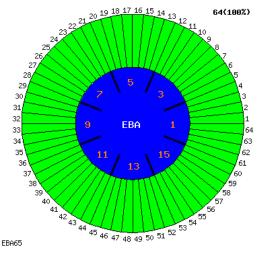
LVPS Box

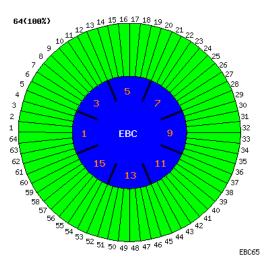
Box Assembly Expert

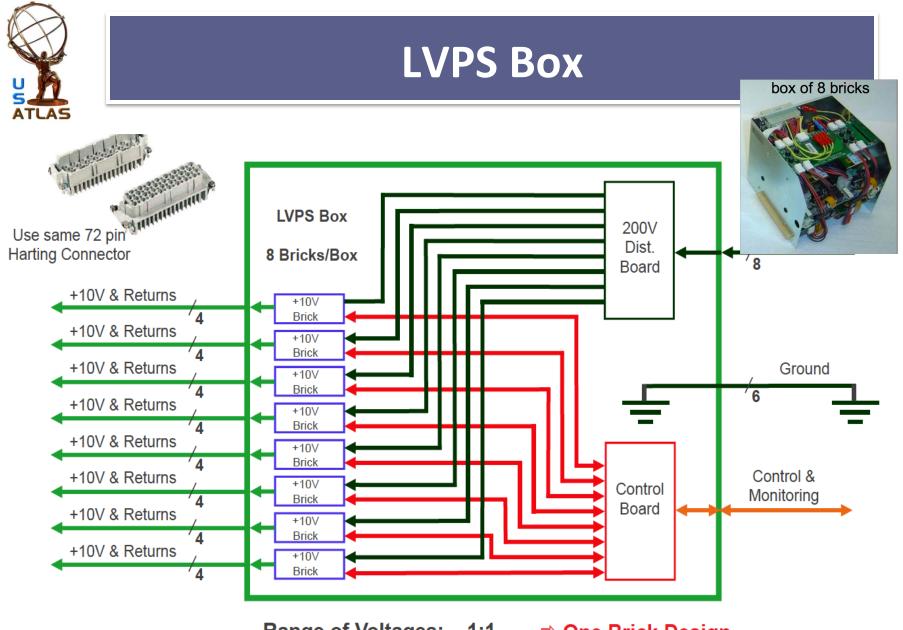
- Dhiman Chakraborty, Professor of Physics, Northern Illinois University
- Member of ATLAS and the Tile Calorimeter team since NIU joined in 2007
- US ATLAS Level-3 manager for Tile Calorimeter Calibration Database (2012-present)
- In charge of NIU's institutional responsibilities on ATLAS TileCal (next_nu).
 Other current members of the TileCal group at NIU are
 - Iuori Smirnov (Research Scientist),
 - Pawel Klimek (Post-doc),
 - Blake Burghgrave (Graduate Student),
 - Puja Saha (Graduate Student).
- Will have additional personnel to help on this project
 - Electrical Engineer (Nicholas Pohlman OR suitable alternative)
 - Electrical Technician (Alexandre Dychkant OR Kurt Francis)
 - Undergraduate students (to be named)

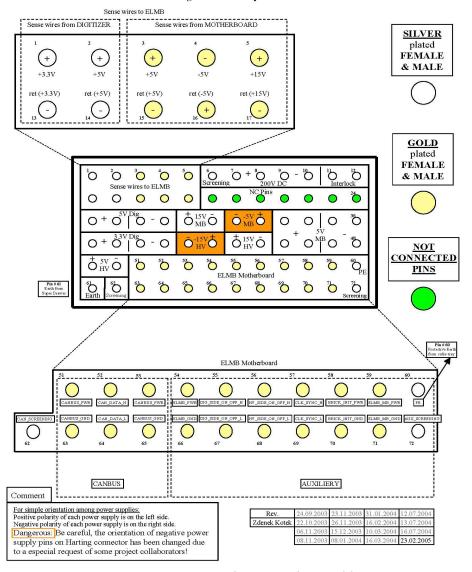
Northern Illinois U


- The NIU ATLAS group has been participating in TileCal tasks since joining the collaboration in 2007
 - Institutional responsibilities in software projects (hardware done by then).
 - Contributed to the development and coordination of the Data Quality
 Monitoring system for online and offline use, signal reconstruction.
 - Full responsibility for maintenance, continued development, and user support for the TileCal calibration (conditions) database.
 - Scientists and grad students serve(d) in leadership roles on TileCal operations and maintenance.
- NIU is interested in contributing to hardware development for the HL-LHC upgrade. Have
 - In-house experience
 - Strong support from University, Northern Illinois Center for Accelerator and Detector Development

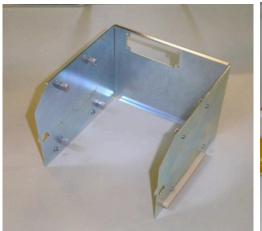



TileCal LVBOX deployment


Low Voltage power to each module (in green) is supplied by one "box" containing: 8 independent DC/DC converters (bricks), an **ELMB Mother-board**, an **ELMB module**, 200V DC distribution **Fuse Board**, **internal cable set**, and **chassis** and a water cooled heat sink.

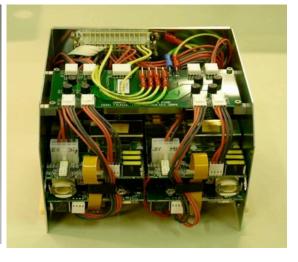


Range of Currents: ~2:1 * ⇒ Factor of 2 for redundancy

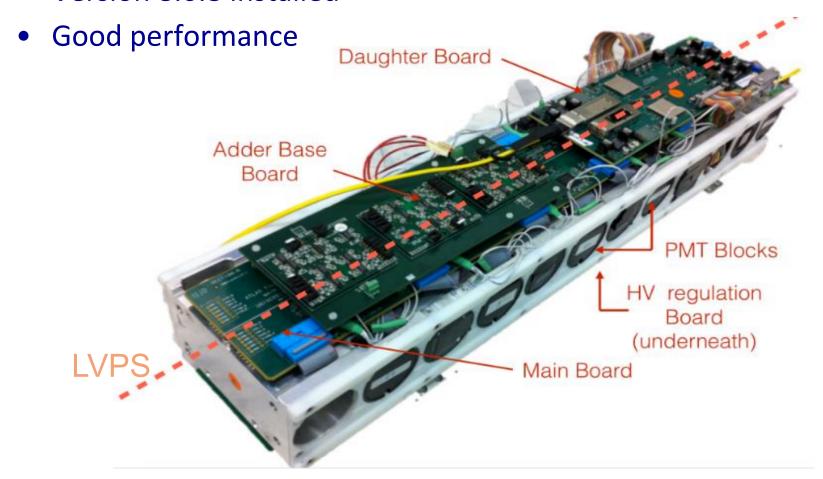

LVBOX I/O connections

Internal view of Harting connector 72 pins from inside the LV box

LVBOX assembly from components



- LVPS "box" V7.5 assembly done at CERN by CERN/Prague
- V8 for HL-LHC will be similar, production shared 50-50 by NIU and Prague


BoE for LVBOX production

- Labor: FTE estimates based on experience from previous campaigns. NIU components are
 - Vendor selection, component selection, BoM
 - Burn-in and basic check-out (of half of the total of 256 boxes)
 - Diagnose and repair failures
 - Inventory, crate and ship to CERN
- Material: estimates based on procurement for v7.5
 - For maximum uniformity, procurement of each component is assigned to a single institution.
 - NIU will procure the fuse boards, connectors and cables, including fabrication.
 - A test-stand and burn-in station will have to be set up at NIU.
- Travel: for pre-production at CERN

Demonstrator

Version 8.0.8 installed

Backup

WBS 6.5.4.4

WBS	Deliverable	Task	Labor Hrs	Labor \$	M&S \$	Travel \$	Total \$
	LVPS Assembly			232,419		19,275	445,644
	Final design	LV4010	355			3.855	48,161
	Engineers		355			-,	
	Technicians		0				
	Student labor		0				
	Preproduction procurement	LV4020	355	44,306	18,750	0	63,056
	Engineers		355				
	Technicians		0				
	Student labor		0				
	Preproduction assembly	LV4030	80	7,196	0	3,855	11,051
	Engineers		40				
	Technicians		40				
	Student labor		0				
	Preproduction burn-in and checkout	LV4040	80	7,196	0	7,710	14,906
	Engineers		40				_
	Technicians		40				
	Student labor		0				
	Preproduction diagnostics and repair	LV4050	80	7,196	0	0	7,196
	Engineers		40				
	Technicians		40				
	Student labor		0				
	Test equipment	LV4060	480	44,470	20,000	0	64,470
	Engineers		240				
	Technicians		240				
	Student labor		0				
	Production procurement	LV4120	136	10,593	128,000	0	138,593
	Engineers		40				
	Technicians		96				
	Student labor		0				
	Production Assembly	LV4130	120	10,045	0	3,855	13,900
	Engineers		40				
	Technicians		80				
	Student labor		0				
	Production burn-in and checkout	LV4140	480	23,706	4,000	0	27,706
	Engineers		80				
	Technicians		80				
	Student labor		320				
	Production diagnostics and repair	LV4150	320	30,994	4,000	0	34,994
	Engineers		160				
	Technicians		160				
	Student labor		0				
	Shipping	LV4210	40	2,411	19,200	0	21,611
	Engineers		0				
	Technicians		40				
	Student labor		0				

WBS 6.5.2.4

Student labor		0				
Basic checkout and burn-in	LV2040	888	33,888	0	0	33,888
Engineers		0				
Technicians		444				
Student labor		444				
Repairs	LV2050	296	19,305	0	2,000	21,305
Engineers		0				
Technicians		296				
Student labor		0				
Test Equipment	LV2070	74	4,344	15,000	0	19,344
Engineers		0				
Technicians		74				
Student labor		0				
Parts Procurement	LV2120	167	19,305	221,000	0	240,305
Engineers		111				
Technicians		56				
Student labor		0				
PCB Fab and assy	LV2130	222	11,757	110,000	6,000	127,757
Engineers		0				
Technicians		222				
Student labor		0				
Basic checkout and burn-in	LV2140	8,066	196,390	0	0	196,390
Engineers		0				
Technicians		962				
Student labor		7,104				
Repairs	LV2150	475	44,590	5,000	0	49,590
Engineers		197				
Technicians		278				
Ottoda at tables						